Fly in a straight line unless an outside force changes its course because i tried it once in a baseball game that my mommy rekt me in.
A star is a large ball of gas that emits energy produced by nuclear reactions in the star's interior. Much of this energy is emitted as electromagnetic radiation, including visible light. Light emitted by stars enables other objects in the universe to be seen by reflection.
The problem states that the distance travelled (d) is
directly proportional to the square of time (t^2), therefore we can write this in
the form of:
d = k t^2
where k is the constant of proportionality in furlongs /
s^2
<span>Using the 1st condition where d = 2 furlongs, t
= 2 s, we calculate for the value of k:</span>
2 = k (2)^2
k = 2 / 4
k = 0.5 furlongs / s^2
The equation becomes:
d = 0.5 t^2
Now solving for d when t = 4:
d = 0.5 (4)^2
d = 0.5 * 16
<span>d = 8 furlongs</span>
<span>
</span>
<span>It traveled 8 furlongs for the first 4.0 seconds.</span>
Answer:
a)
b)
Explanation:
a) Let's use the constant velocity equation:
- v is the speed of the muon. 0.9*c
- c is the speed of light 3*10⁸ m/s
b) Here we need to use Lorentz factor because the speed of the muon is relativistic. Hence the time in the rest frame is the product of the Lorentz factor times the time in the inertial frame.
v is the speed of muon (0.9c)
Therefore the time in the rest frame will be:
No we use the value of Δt calculated in a)
I hope it helps you!