Moles of solute does not change.
Answer:
element
Explanation:
an element is something made up of only one type of atom
Answer:
1.02mol
Explanation:
Using the general gas equation below;
PV = nRT
Where;
P = pressure (atm)
V = volume (L)
n = number of moles (mol)
R = gas law constant (0.0821 Latm/molK)
T = temperature (K)
According to the information provided in this question,
P = 2.0 atm
V = 11.4L
T = 273K
n = ?
Using PV = nRT
n = PV/RT
n = 2 × 11.4/ 0.0821 × 273
n = 22.8/22.41
n = 1.017
n = 1.02mol
Answer:
Explanation:
Hello there!
In this case, according to the given information, it turns out firstly necessary for us to set the equation for the calculation of density and mass divided by volume:
Thus, we can find the mass of the unknown by subtracting the total mass of the liquid to the mass of the flask and the liquid:
So that we are now able to calculate the density in g/mL first:
Now, we proceed to the conversion to lb/in³ by using the following setup:
Regards!
Answer:
The concentration of KOH is 0.186 M
Explanation:
First things first, we need too write out the balanced equation between HBr and KOH.
This is given as;
KOH (aq) + HBr (aq) → KBr (aq) + H2O (l)
From the reaction above, we can tell that it takes 1 mole of KOH to react with 1 mole of HBr.
We use the acid base formular in calculating unknown concentrations. This is given as;
where;
Ca = Concentration of acid
Va = Volume of acid
Cb = Concentration of base
Vb = Volume of base
na = Number of moles of acid
nb = Number of moles of base
KOH is the base and HBr is acid.
Hence;
Ca = 0.225
Va = 35
Cb = ?
Vb = 42.3
na = 1
nb = 1
Making Cb subject of formular we have;
Cb = (0.225 * 35 * 1) / (42.3 * 1)
Cb = 0.186 M