Answer:
B. As the temperature increases, the kinetic energy of the molecules increases.
Explanation:
When the temperature of an object increases, the kinetic energy of its particles increases, so the thermal energy of an object increases as its temperature increases.
The best answer is A) <span>keep moving at a constant velocity until some forces act on them
As the man you're probably tired of hearing about said:
"Every object persists in its state of rest or in uniform motion in a straight line unless a new force acts upon it"
This is Isaac Newton's 1st law of motion, or the law of inertia.
Put more simply, objects in motion tend to stay in motion, and tend the maintain the same velocity (direction and speed) and objects at rest tend to stay at rest. </span>
To determine the amount in grams of the iron, we need data on the density of iron. From literature, it has a value of <span>p=7.9 g/cm3. We simply multiply the volume to the density. We do as follows:
mass = 3.70 (7.9) = 29.23 g Fe
Hope this answers the question. Have a nice day.</span>
Answer:
2.45 J
Explanation:
The following data were obtained from the question:
Mass (m) = 0.5 kg
Height (h) = 1 m
Kinetic energy (KE) =?
Next, we shall determine the velocity of the rock after it has fallen half way. This can be obtained as follow:
Initial velocity (u) = 0 m/s
Acceleration due to gravity (g) = 9.8 m/s²
Height (h) = 1/2 = 0.5 m
Final velocity (v) =?
v² = u² + 2gh
v² = 0² + (2 × 9.8 × 0.5)
v² = 9.8
Take the square root of both side
v = √9.8
v = 3.13 m/s
Finally, we shall determine the kinetic energy of the rock after it has fallen half way. This can be obtained as follow:
Mass (m) = 0.5 kg
Velocity (v) = 3.13 m/s
Kinetic energy (KE) =?
KE = ½mv²
KE = ½ × 0.5 × 3.13²
KE = 0.25 × 9.8
KE = 2.45 J
Therefore, the kinetic energy of the rock after it has fallen half way is 2.45 J
Answer:
Approximately 21 km.
Explanation:
Refer to the not-to-scale diagram attached. The circle is the cross-section of the sphere that goes through the center C. Draw a line that connects the top of the building (point B) and the camera on the robot (point D.) Consider: at how many points might the line intersects the outer rim of this circle? There are three possible cases:
- No intersection: There's nothing that blocks the camera's view of the top of the building.
- Two intersections: The planet blocks the camera's view of the top of the building.
- One intersection: The point at which the top of the building appears or disappears.
There's only one such line that goes through the top of the building and intersects the outer rim of the circle only once. That line is a tangent to this circle. In other words, it is perpendicular to the radius of the circle at the point A where it touches the circle.
The camera needs to be on this tangent line when the building starts to disappear. To find the length of the arc that the robot has travelled, start by finding the angle which corresponds to this minor arc.
This angle comes can be split into two parts:
.
Also,
.
The radius of this circle is:
.
The lengths of segment DC, AC, BC can all be found:
In the two right triangles and , the value of and can be found using the inverse cosine function:
.
The length of the minor arc will be:
.