Answer:
A) 6.00 mol.
B) 0.375 L or 375 mL
C) 6.00 M
Explanation:
Hello,
A) In this case, from the definition of molarity, we compute the moles for the given volume and concentration:
B) In this case, from the stock solution, the required volume is:
C) In this case, we apply the following formula for dilution process:
Thus, solving for the final molarity, we obtain:
Regards.
Answer:
1.204428 * 10^24 atoms
Explanation:
Number of moles = 2 mol
Number of atoms = ?
The relationship between moles and atoms is given by the avogadro's umber. This is the number of units in one mole of a substance. The units can be atoms, ions etc In this case it is atoms. The number is equal to 6.02214076 * 10^23
This means;
1 mol = 6.02214076 * 10^23
2 mol = x
Upon solving for x,
x = 2 * 6.02214076 * 10^23
x = 12.04428 * 10^23
x = 1.204428 * 10^24 atoms
Answer:
Magnet with a positive and a negative pole
Explanation:
A great analogy to demonstrate what a polar molecule looks like is to imagine a magnet. A magnet has one positively charged end and one negatively charged end, two poles, that is.
Imagine that we have a magnet of a shape of a prism (water molecule has a bent shape). The two base vertices of the face of the triangle are positively charged, that's because hydrogen is less electronegative than oxygen and, hence, the two hydrogen atoms are partially positively charged in a water molecule.
Oxygen is more electronegative than hydrogen meaning it has a greater electron-withdrawing force, so electrons are closer to oxygen within the O-H bonds. Oxygen, as a result, becomes partially negatively charged, so it's our negative pole of the magnet.
Answer:
ΔT = Tfinal − Tinitial = 150°C − 35.0°C = 125°C
given the specific heat of iron as 0.108 cal/g·°C
heat=(100.0 g)(0.108 cal /g· °C )(125°C) =
100x 0.108x125= 1350 cal