In order to find the our own velocity with respect to land,we need to apply the theory of relative velocity.
Now consider the velocity of the ship traveling towards the north with respect to land as A.Consider our own velocity headed northwards as B.
The relative velocity is the velocity that the body A would appear to an observer on the body B and vice versa.
In this case the relative velocity would be arrived by summing up our velocity with the velocity of the ship as the object (I) is travelling in the ship.
Relative velocity = Velocity of Body A+ Velocity of Body B.
Velocity of the ship traveling towards the north with respect to land(A)= 13.0m/s. (Given)
Our own velocity headed northwards(B)= 2.8 m/s.
Relative velocity = Velocity of Body A+ Velocity of Body B.
Relative velocity= 13.0 + 2.8 = 15.8m/s.
Thus our own velocity with respect to the land is 15.8 m/s.
Answer:
Explanation:
Work done on the lever ( input energy ) = force applied x input distance
= 24 N x 2m = 48 J
Work done by the lever ( output energy ) = load x output distance
= 72 N x 0.5m = 36 J
efficiency = output energy / input energy
= 36 J / 48 J
= 3 / 4 = .75
In percentage terms efficiency = 75 % .
Answer:
t = 5 s
Explanation:
Data:
- Initial Velocity (Vo) = 7 m/s
- Acceleration (a) = 3 m/s²
- Final Velocity (Vf) = 22 m/s
- Time (t) = ?
Use formula:
Replace:
Solve the subtraction of the numerator:
It divides:
How much time did it take the car to reach this final velocity?
It took a time of <u>5 seconds.</u>
Explanation:
a straight line under the letter