The equation of a circle:
(h, k) - center
r - radius
Look at the picture:
center: (4, -2) → h = 4, k = -2
radius: r= 5
Substitute:
NO. It's FALSE.
therefore 0.3801 > 0.3711
<h3>
Hola! :D ¡te invito a recibir ayuda de un latinoamericano puto!</h3><h2><u>
_____________________________________ </u></h2><h2> 8.35x - 1.5 = 71.98</h2><h2> - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -</h2>
<u>El -1,5 qlero pasaría al otro lado positivo</u>
<h3> 8.35x = 71.98 + 1.5</h3><h2> - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -</h2>
<u>Ahora, se suma 71.98 + 1.5 = 73,48</u>
<h3> 8.35x = 73,48</h3><h2> - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -</h2>
<u>El 8.35 qlero que está multiplicando, pasa al otro lado pero dividiendo</u>
<h3> x = 73,48 ÷ 8.35</h3><h2> - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -</h2>
<u>Dividimos</u>
<h3> x = 8,8</h3><h2> - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -</h2><h2> <u>(b) 8,8</u> es la opción correcta</h2>
Answer:
Read Below
Step-by-step explanation:
we can represent a function using a graph. Graphs display many input-output pairs in a small space. The visual information they provide often makes relationships easier to understand. We typically construct graphs with the input values along the horizontal axis and the output values along the vertical axis.
The vertical line test can be used to determine whether a graph represents a function. A vertical line includes all points with a particular
x
value. The
y
value of a point where a vertical line intersects a graph represents an output for that input
x
value. If we can draw any vertical line that intersects a graph more than once, then the graph does not define a function because that
x
value has more than one output. A function has only one output value for each input value.