<span>There are few main factors affecting the atomic radii, the outermost electrons and the protons in the nucleus and also the shielding of the internal electrons. I would speculate that the difference in radii is given by the electron clouds since the electrons difference in these two elements is in the d orbital and both has at least 1 electron in the 4s (this 4s electron is the outermost electron in all the transition metals of this period). The atomic radio will be mostly dependent of these 4s electrons than in the d electrons. Besides that, you can see that increasing the atomic number will increase the number of protons in the nucleus decreasing the ratio of the atoms along a period. The Cu is an exception and will accommodate one of the 4s electrons in the p orbital.
</span><span>Regarding the density you can find the density of Cu = 8.96g/cm3 and vanadium = 6.0g/cm3. This also correlates with the idea that if these two atoms have similar volume and one has more mass (more protons; density is the relationship between m/V), then a bigger mass for a similar volume will result in a bigger density.</span>
Answer:
c
Explanation:
the correct answer would be answer c
When organisms and plants died and sank to the bottom of swamps and oceans, brown soil-like materials called peat are formed. Over millions of years, the peat became covered with sand, clay and other minerals and the peat is converted into layers of sedimentary rocks. After a long time, different type of fossil fuels are formed.
It's probably animal if that's what's you're asking.
Answer:
Samarium
Explanation:
The element Sm describe is called Samarium. This element has unique sets of properties that makes it very unique and distinct.
The lanthanides are found in the f-block on the periodic table of elements.
This element is a moderately hard silvery metal that readily oxidizes in air. It assumes an oxidation state of +3. The element has an atomic number of 62