The wavelength of the infrared radiation is λ = ×m.
<h3>What is infrared radiation?</h3>
An infrared telescope is tuned to detect infrared radiation with a frequency of 9.45 THz.
We know that,
1 THz = 10¹² Hz
So,
f = 9.45 × 10¹² Hz
We need to find the wavelength of the infrared radiation.
λ=c/f
λ = 3×/9.45×
λ = 3.174 × m
The term "infrared radiation" (IR) refers to a part of the electromagnetic radiation spectrum with wavelengths between about 700 nanometers (nm) and one millimeter (mm). Longer than visible light waves but shorter than radio waves are infrared waves.
Electromagnetic radiation with wavelengths longer than those of visible light is known as infrared, also known as infrared light. Since it is undetectable to the human eye, The typical range of wavelengths considered to be infrared (IR) is from about 1 millimeter to the nominal red edge of the visible spectrum, or about 700 nanometers.
To learn more about infrared radiation from the given link:
brainly.com/question/13163856
#SPJ4
The final velocity () of the first astronaut will be greater than the <em>final velocity</em> of the second astronaut () to ensure that the total initial momentum of both astronauts is equal to the total final momentum of both astronauts <em>after throwing the ball</em>.
The given parameters;
- Mass of the first astronaut, = m₁
- Mass of the second astronaut, = m₂
- Initial velocity of the first astronaut, = v₁
- Initial velocity of the second astronaut, = v₂ > v₁
- Mass of the ball, = m
- Speed of the ball, = u
- Final velocity of the first astronaut, =
- Final velocity of the second astronaut, =
The final velocity of the first astronaut relative to the second astronaut after throwing the ball is determined by applying the principle of conservation of linear momentum.
if v₂ > v₁, then , to conserve the linear momentum.
Thus, the final velocity () of the first astronaut will be greater than the <em>final velocity</em> of the second astronaut () to ensure that the total initial momentum of both astronauts is equal to the total final momentum of both astronauts after throwing the ball.
Learn more here: brainly.com/question/24424291
Answer:
The answer is 20727w
Explanation:
The formula is below;
P = d r^2 v^3 *efficiency
In the question, it is stated that the registration ignores efficiency so we are going to ignore efficiency in the equation and use it this way;
P = d r^2 * v^3
d =4.3, r = 1.59, v =n 12.4
Therefore, P = 4.3 X 1.59^2 X 12.4^3 = 20727W
1) find speed (8.8 m/s)
2) find acceleration (38.7 m/s^2)
answer is about 38.7 m/s^2