Answer:
Ionic character
A. PF₃ > PBr₃ > PCl₃
B. BF₃ > CF₄ > NF₃
C. TeF₄ > BrF₃ > SeF₄
Explanation:
The most electronegative element is fluorine, followed chlorine, phosphorous nitrogen etc.
- Atoms with high electronegativity tend to form negative ions.
- Ionic compounds formed between elements with high electronegativity difference.
- % ionic character is directly proportional to electronegativity difference.
- According to Pauling Scale E.n for F(4.0), O(3.5), N(3.0), C(2.5), B(2.0), P(2.19), Se(2.55) , Te (2.1), Cl(3.16) and Br(2.96)
- ΔE.N (Electronegativity difference) between( P and F = 4 - 2.19 = 1.81), (P and Br = 2.96 - 2.19 = 0.77) , (P and Cl = 3.16 - 2.96 = 0.2 )
- ΔE.N (Electronegativity difference) between( N and F = 4 - 3 = 1), (B and F = 4 - 2 = 2) , (C and F = 4 - 2.5 = 1.5 )
- ΔE.N (Electronegativity difference) between( Se and F = 4 - 2.55 = 1.45), (F and Te = 4 - 2.1 = 1.9) , (F and Br = 4 - 2.19 = 1.81 )
2H(+) + SO4(2-) + Ca(2+) + 2I(-) -> CaSO4(s) + 2H(+) + 2I(-)
The signs in brackets are the subscripts for the charge of the ion. This is the complete ionic equation. The net ionic equation is:
Ca(2+) + SO4(2-) -> CaSO4
Basically all it is a nucleus splitting into smaller fragments and these fragments are almost equal to half of the original mass
The equilibrium constant of the reaction is 282. Option D
<h3>What is equilibrium constant?</h3>
The term equilibrium constant refers to the number that often depict how much the process is able to turn the reactants in to products. In other words, if the reactants are readily turned into products, then it follows that the equilibrium constant will be large and positive.
Concentration of bromine = 0.600 mol /1.000-L = 0.600 M
Concentration of iodine = 1.600 mol/1.000-L = 1.600M
In this case, we must set up the ICE table as shown;
Br2(g) + I2(g) ↔ 2IBr(g)
I 0.6 1.6 0
C -x -x +2x
E 0.6 - x 1.6 - x 1.190
If 2x = 1.190
x = 1.190/2
x = 0.595
The concentrations at equilibrium are;
[Br2] = 0.6 - 0.595 = 0.005
[I2] = 1.6 - 0.595 = 1.005
Hence;
Kc = [IBr]^2/[Br2] [I2]
Kc = ( 1.190)^2/(0.005) (1.005)
Kc = 282
Learn more about equilibrium constant:brainly.com/question/15118952
#SPJ1