Answer:
Explanation:
Na react with H2O to form NAOH
2 Na+2H2O....................2NAOH + H2
Ca react with water and form calcium hydroxide
Ca + 2H2O........................Ca(OH)2
Mg react with water and form Magnesium hydroxide
Mg +2H2O .........................Mg(OH)2 however this coating of mg(oh)2 prevent it from further reaction
Fe react with water and form ferric hydride
3Fe +H2O.......................2 FeH +FeO
copper do not react with water
Answer:
336.6 grams of CO₂ and 183.6 grams of H₂O are formed from 2.55 moles of propane.
Explanation:
In this case, the balanced reaction is:
C₃H₈ + 5 O₂ → 3 CO₂ + 4 H₂O
By stoichiometry of the reaction (that is, the relationship between the amount of reagents and products in a chemical reaction), the following amounts of reactant and product participate in the reaction:
- C₃H₈: 1 mole
- O₂: 5 moles
- CO₂: 3 moles
- H₂O: 4 moles
Being the molar mass of each compound:
- C₃H₈: 44 g/mole
- O₂: 16 g/mole
- CO₂: 44 g/mole
- H₂O: 18 g/mole
Then, by stoichiometry, the following quantities of mass participate in the reaction:
- C₃H₈: 1 mole* 44 g/mole= 44 grams
- O₂: 5 moles* 16 g/mole= 80 grams
- CO₂: 3 moles* 44 g/mole= 132 grams
- H₂O: 4 moles* 18 g/mole= 72 grams
So you can apply the following rules of three:
- If by stoichiometry 1 mole of C₃H₈ forms 132 grams of CO₂, 2.55 moles of C₃H₈ how much mass of CO₂ will it form?
mass of CO₂= 336.6 grams
- If by stoichiometry 1 mole of C₃H₈ forms 72 grams of H₂O, 2.55 moles of C₃H₈ how much mass of H₂O will it form?
mass of H₂O= 183.6 grams
<u><em>336.6 grams of CO₂ and 183.6 grams of H₂O are formed from 2.55 moles of propane.</em></u>
Use the ideal gas formula-----> PV= nRT
P= 2.50 atm
V= 250 mL= 0.250 L
n= 0.100 moles
R= 0.0821 atmxL/molesxK
T= ?
T= PV/nR
T= (2.50 atm x 0.250 L) / (0.100 moles x 0.0821)= 76.1 K
<span>Chemical formula of ammonia = NH3
As we can see there are three atoms of hydrogen in one molecule of ammonia.
So in the 200 molecule of ammonia there will be = 200*3 = 600 atoms of hydrogen.
Answer - 600 atoms of hydrogen.</span>