Answer:
Mass of KNO3= 10g
Molar mass of KNO3 = 101.1032g/mol
Volume = 250ml = 0.25L
No of mole on of KNO3 = mass of KNO3/Molar mass of KNO3
no of mole of KNO3 = 10/101.1032
No of mole of KNO3 = 0.09891
molarity of KNO3 = no of mole of KNO3/Vol (L)
Molarity = 0.09891/0.25 = 0.3956M
Molarity of KNO3 = 0.3956M
Answer:
Kc = 3.72 × 10⁶
Explanation:
Let's consider the following reaction:
NH₄HS(g) ⇄ NH₃(g) + H₂S(g)
At equilibrium, we have the following concentrations:
[NH₄HS] = 0.196 M (assuming a 1 L flask)
[NH₃] = 9.56 × 10² M
[H₂S] = 7.62 × 10² M
We can replace this data in the Kc expression.
Answer:
The heat produced is -15,1kJ
Explanation:
For the reaction:
2SO₂+O₂ → 2SO₃
The enthalpy of reaction is:
ΔHr = 2ΔHf SO₃ - 2ΔHf SO₂
As ΔHf SO₃ = -395,7kJ and ΔHf SO₂ = -296,8kJ
<em>ΔHr = -197,8kJ</em>
Using n=PV/RT, the moles of reaction are:
= <em>0,153 moles of reaction</em>
As 2 moles of reaction produce -197,8kJ of heat, 0,153moles produce:
0,153mol× = <em>-15,1kJ</em>
<em></em>
I hope it helps!
Atoms of sulfur = 9.60⋅g32.06⋅g⋅mol−1×6.022×1023⋅mol−1 . Because the units all cancel out, the answer is clearly a number, ≅2×1023 as required.
Answer:
Explanation:
From the question we are told that:
Pressure
Temperature
Volume
Heat Produced
Generally the equation for ideal gas is mathematically given by
Therefore
Since
Heat of combustion of Methane=889 kJ/mol
Heat of combustion of Propane=2220 kJ/mol
Therefore
Comparing Equation 1 and 2 and solving simultaneously
Therefore
Mole fraction 0f Methane is mathematically given as