If you increase the mass m of the car, the force F will increase, while acceleration a is kept constant. Because F and m are directly proportional.
If you increase the acceleration a of the car, the force F will increase, while mass m is kept constant. Because F and a are directly proportional.
How can Newton's laws be verified experimentally; is by setting this experiment, and changing one variable while keeping the other constant, then observe the change in F.
Hope this helps.
Answer:
Approaches mathematical learning through inquiry
-Explore real contexts, problems, situations, and models
-Learning through doing shifts the focus on the students
-Problems have multiple entry and exit points
-Links to other disciplines
Explanation:
quizlet
Answer:
The average force exerted on the man by the ground therefore is 153.319.53 N
Explanation:
Given the following information
Mass of man, m = 75 kg
height of fall, h = 0.48 cm
velocity just before landing, v = 4.43 m/s
We therefore have
The work required to break the fall is equal to the kinetic energy of motion, just before touching the ground
Work done = Energy to absorb Kinetic Energy KE = 0.5·m·v²= F·h
Where:
F = Force required to break the fall
Therefore the force, F = (0.5·m·v² )/h
= 0.5×75 kg ×(4.43 m/s)²/(0.0048 m) = 153319.53 N
The average force exerted on him by the ground is therefore
= 153319.53 N.