The transit method requires watching the light output of a star over long periods of time. A transit occurs when the planet crosses in front of its star from earths point of view. Since there is a small object (the planet) now blocking some of the star, it appears to dim a little bit for a while until the planet passes. If we are in a position where that occurs regularly (most paths of planets do not happen to be on the line of sight between earth and their star) we can deduce the period of orbit. From the amount of dimming and the period you can estimate the mass
Answer:
The magnitude of the acceleration is
The direction is i.e the negative direction of the z-axis
Explanation:
From the question we are that
The mass of the particle
The charge on the particle is
The velocity is
The the magnetic field is
The charge experienced a force which is mathematically represented as
Substituting value
Note :
Now force is also mathematically represented as
Making a the subject
Substituting values
Answer: Organ failure is when a major organ stops working. Major organs all have important jobs to keep the body alive. Each organ counts on the other ones to keep the body working. If one of these organs stops working, the patient will not be able to survive without the help of very strong medicines and/or machines.
Explanation:
Answer:
b
every magnet is made of many aligned smaller magnets
Explanation:
Answer:
ΔU = e(V₂ - V₁) and its value ΔU = -2.275 × 10⁻²¹ J
Explanation:
Since the electric potential at point 1 is V₁ = 33 V and the electric potential at point 2 is V₂ = 175 V, when the electron is accelerated from point 1 to point 2, there is a change in electric potential ΔV which is given by ΔV = V₂ - V₁.
Substituting the values of the variables into the equation, we have
ΔV = V₂ - V₁.
ΔV = 175 V - 33 V.
ΔV = 142 V
The change in electric potential energy ΔU = eΔV = e(V₂ - V₁) where e = electron charge = -1.602 × 10⁻¹⁹ C and ΔV = electric potential change from point 1 to point 2 = 142 V.
So, substituting the values of the variables into the equation, we have
ΔU = eΔV
ΔU = eΔV
ΔU = -1.602 × 10⁻¹⁹ C × 142 V
ΔU = -227.484 × 10⁻¹⁹ J
ΔU = -2.27484 × 10⁻²¹ J
ΔU ≅ -2.275 × 10⁻²¹ J
So, the required equation for the electric potential energy change is
ΔU = e(V₂ - V₁) and its value ΔU = -2.275 × 10⁻²¹ J