If she takes out six then the fraction is 6/36 then you just simplify dividing it by 6 which will give you 1/6.
Given:
The scale factor is 1:12.
Dimension of model = 32 cm
To find:
The actual dimension in m.
Solution:
Let x be the actual dimension.
The scale factor is 1:12 and the dimension of model is 32 cm.
On cross multiplication, we get
Therefore, the actual dimension is 3.84 m.
Answer:
7 each
Step-by-step explanation:
28÷4=7
1/4 of 28=7
You do the implcit differentation, then solve for y' and check where this is defined.
In your case: Differentiate implicitly: 2xy + x²y' - y² - x*2yy' = 0
Solve for y': y'(x²-2xy) +2xy - y² = 0
y' = (2xy-y²) / (x²-2xy)
Check where defined: y' is not defined if the denominator becomes zero, i.e.
x² - 2xy = 0 x(x - 2y) = 0
This has formal solutions x=0 and y=x/2. Now we check whether these values are possible for the initially given definition of y:
0^2*y - 0*y^2 =? 4 0 =? 4
This is impossible, hence the function is not defined for 0, and we can disregard this.
x^2*(x/2) - x(x/2)^2 =? 4 x^3/2 - x^3/4 = 4 x^3/4 = 4 x^3=16 x^3 = 16 x = cubicroot(16)
This is a possible value for y, so we have a point where y is defined, but not y'.
The solution to all of it is hence D - { cubicroot(16) }, where D is the domain of y (which nobody has asked for in this example :-).
(Actually, the check whether 0 is in D is superfluous: If you write as solution D - { 0, cubicroot(16) }, this is also correct - only it so happens that 0 is not in D, so the set difference cannot take it out of there ...).
If someone asks for that D, you have to solve the definition for y and find that domain - I don't know of any [general] way to find the domain without solving for the explicit function).
Answer:
In Section 6.1, we introduced the logarithmic functions as inverses of exponential functions and
discussed a few of their functional properties from that perspective. In this section, we explore
the algebraic properties of logarithms. Historically, these have played a huge role in the scientific
development of our society since, among other things, they were used to develop analog computing
devices called slide rules which enabled scientists and engineers to perform accurate calculations
leading to such things as space travel and the moon landing. As we shall see shortly, logs inherit
analogs of all of the properties of exponents you learned in Elementary and Intermediate Algebra.
We first extract two properties from Theorem 6.2 to remind us of the definition of a logarithm as
the inverse of an exponential function.
Step-by-step explanation:
Hope this helps