When a boy throws a ball and accidentally breaks a window, the momentum of the ball and all the pieces of glass taken together after the collision is THE SAME as the momentum of the ball before the collision
hope this helps
Answer:
(B) 13.9 m
(C) 1.06 s
Explanation:
Given:
v₀ = 5.2 m/s
y₀ = 12.5 m
(A) The acceleration in free fall is -9.8 m/s².
(B) At maximum height, v = 0 m/s.
v² = v₀² + 2aΔy
(0 m/s)² = (5.2 m/s)² + 2 (-9.8 m/s²) (y − 12.5 m)
y = 13.9 m
(C) When the shell returns to a height of 12.5 m, the final velocity v is -5.2 m/s.
v = at + v₀
-5.2 m/s = (-9.8 m/s²) t + 5.2 m/s
t = 1.06 s
Newton's 3 laws are...
inertia: things tend to continue to do what they are doing.
Change: to make something change you need a force to change it. the force needed = the mass times its acceleration
<span>
Resistance: When you push on something, it pushes back.
From yahoo answers
</span>
Answer:
E_total = 3 N / A
Explanation:
The electric field is a vector magnitude so when adding we must use vectors, in this case as the initial field E = 4N / c goes towards the axis axis and the field created by the fixed charge (E1) is also on the axis x we can add in scalar form.
E_total = E + E₁
the expression for the field of a point charge is
E₁ = k q₁ / r²
for the point x = 2m, they do not say that the total field is zero, so the charge q1 must be negative
E_total = E -k q₁ / r₂
we substitute
0 = E - k q₁ / r²
q₁ =
let's calculate
q₁ =
q₁ = 1.78 10⁻⁹ C
now we can calculate the field for position x = 4 m
E_total = 4 - 9 10⁹ 1.78 10⁻⁹ / 4²2
E_total = 3 N / A