Answer:
It will cause kinetic energy to increase.
Explanation:
Given that Speed and Motion you went from the starting line to the finish line at different rates.
If you repeated the activity while carrying weights but keeping your times the same, the weight carried will add up to the mass of the body.
And since Kinetic energy K.E = 1/2mv^2
Increase in the mass of the body will definitely make the kinetic energy of the body to increase.
Since the time is the same, that means the speed V is the same.
Weight W = mg
m = W/g
The new kinetic energy will be:
K.E = 1/2(M + m)v^2
This means that there will be increase in kinetic energy.
Answer: Radio waves have the lowest energies, longest wavelengths, and lowest frequencies of any type of EM radiation. In order from highest to lowest energy, the sections of the EM spectrum are named: gamma rays, X-rays, ultraviolet radiation, visible light, infrared radiation, and radio waves.
Explanation:
Given that Oxygen has an oxidation state of 2 -, you can combine Mn 3+ with O 2- ions to form Mn2O3, and you can combine Mn 2+ with O 2- to form Mn2O2 which is MnO.
The other compounds imply oxidation states of N, Br and Cl that does not exist.
Therefore, the answer is the option D. MnO
Answer:
2.9 M
Explanation:
The concentration-time equation for a second order reaction is:
1/[A] = kt + 1/[A°]
Where,
A = concentration remaining at time, t
A° = initial concentration
k = rate constant
1/[A] = (1.80 x 10^-3) * (45.6) + 1/3.81
1/[A] = 0.345
= 1/0.345
= 2.9 M.
Answer:
6.88 mA
Explanation:
Given:
Resistance, R = 594 Ω
Capacitance = 1.3 μF
emf, V = 6.53 V
Time, t = 1 time constant
Now,
The initial current, I₀ =
or
I₀ =
or
I₀ = 0.0109 A
also,
I =
here,
τ = time constant
e = 2.717
on substituting the respective values, we get
I =
or
I =
or
I = 0.00688 A
or
I = 6.88 mA