Answer:
dnndmssnxnxdnskkaamzmzma nzz.
Answer:
B)The motion of water in an ocean current
Explanation:
With respect to measurements, a vector has both a magnitude and a direction. The first three examples (maximum height of a hill, air temperature, and rain accumulation) are magnitudes only. The fourth example (motion of water in an ocean current) is a vector, because it has a magnitude (speed) and a direction (with the current).
Answer:
The answer you have selected is correct.
Explanation:
Increase radius, force of gravity decreases
Answer:
(a) ω = 1.57 rad/s
(b) ac = 4.92 m/s²
(c) μs = 0.5
Explanation:
(a)
The angular speed of the merry go-round can be found as follows:
ω = 2πf
where,
ω = angular speed = ?
f = frequency = 0.25 rev/s
Therefore,
ω = (2π)(0.25 rev/s)
<u>ω = 1.57 rad/s
</u>
(b)
The centripetal acceleration can be found as:
ac = v²/R
but,
v = Rω
Therefore,
ac = (Rω)²/R
ac = Rω²
therefore,
ac = (2 m)(1.57 rad/s)²
<u>ac = 4.92 m/s²
</u>
(c)
In order to avoid slipping the centripetal force must not exceed the frictional force between shoes and floor:
Centripetal Force = Frictional Force
m*ac = μs*R = μs*W
m*ac = μs*mg
ac = μs*g
μs = ac/g
μs = (4.92 m/s²)/(9.8 m/s²)
<u>μs = 0.5</u>
Answer: a) 274.34 nm; b) 1.74 eV c) 1.74 V
Explanation: In order to solve this problem we have to consider the energy balance for the photoelectric effect on tungsten:
h*ν = Ek+W ; where h is the Planck constant, ek the kinetic energy of electrons and W the work funcion of the metal catode.
In order to calculate the cutoff wavelength we have to consider that Ek=0
in this case h*ν=W
(h*c)/λ=4.52 eV
λ= (h*c)/4.52 eV
λ= (1240 eV*nm)/(4.52 eV)=274.34 nm
From this h*ν = Ek+W; we can calculate the kinetic energy for a radiation wavelength of 198 nm
then we have
(h*c)/(λ)-W= Ek
Ek=(1240 eV*nm)/(198 nm)-4.52 eV=1.74 eV
Finally, if we want to stop these electrons we have to applied a stop potental equal to 1.74 V . At this potential the photo-current drop to zero. This potential is lower to the catode, so this acts to slow down the ejected electrons from the catode.