Answer:
They don’t ‘represent’ anything, they are properties of the wave.
Depending on the type of wave, we experience them as various phenomena. For example, with a sound wave we experience frequency (or wavelength, which is just another way to describe the same property) as the pitch of the sound. We experience amplitude as the loudness of the sound, although due to the characteristics of the ear, frequency also effects perceived loudness.
If the wave is a light wave, we experience the frequency (wavelength) as the colour of the light, and the amplitude as the brightness of the light.
For many waves, we don’t perceive them at all (e.g. radio waves).
For ocean waves, frequency is the time for each peak or trough to reach us, and amplitude is how tall the wave is.
Work = (force) x (distance)
80 J = (force) x (4 m)
Force = (80 J) / (4 m) = 20 N
That's IF the force was in the same direction as the 4m of motion.
If the force was kind of slanted, then it had to be stronger, and
it had a component of 20N in the direction of the motion.
Explanation:
We'll call the radius r and the diameter d:
We also assume that the riders are at a distance r = d/2 = 7m from the center of the wheel.
The period of the wheel is 24s. The tangent velocity of the wheel (and the riders) will be: (2pi/T)*r = 0.8 m/s (circa).
It means that in 3 minutes (180 seconds) they'll run 0.8 m/s * 180s = 144m.
Hopefully I understood the question. If yes, that's the answer.
Answer:
Orbital period, T = 1.00074 years
Explanation:
It is given that,
Orbital radius of a solar system planet,
The orbital period of the planet can be calculated using third law of Kepler's. It is as follows :
M is the mass of the sun
T = 31559467.6761 s
T = 1.00074 years
So, a solar-system planet that has an orbital radius of 4 AU would have an orbital period of about 1.00074 years.
Explanation:
Single slit diffraction
Diffraction is the phenomenon of spreading out of waves as they pass through an aperture or around objects. Diffraction occurs when the size of the aperture or obstacle is of the same order of magnitude as the wavelength of the incident wave. For very small aperture sizes, the vast majority of the wave is blocked. in case of large apertures the wave passes by or through the obstacle without any significant diffraction.