The answer would be option D "a ball sitting on a shelf." Potential energy is the amount of energy a object has while it's at rest.. (or not moving) Kinetic energy is how much energy a object is while it's moving. So in this case it's option D because a ball sitting on a shelf isn't moving therefore it has potential energy. It's not option A because thats a example of kinetic energy since how the roller coaster is moving. It's not option B because it's kinetic energy because the bike is moving. It's also not option C because it's kinetic energy because the bird is moving.
Hope this helps!
Answer:
Explanation:
We know that , If the frictional force on a system is zero , then the total energy of a system will be conserved.
By using energy conservation
KE₁ + U₁ = KE₂ + U₂
KE₁=Kinetic energy at location 1
U₁ =Potential energy at location 1
KE₂=Kinetic energy at location 2
U₂=Potential energy at location 2
Therefore, Raymond is thinking in a right way.
If its accelerating it will increase velocity in the direction of the acceleration which is perpendicular to the velocity.
Answer:
The answer is D. density.
Answer:
v = 5.24[m/s]
Explanation:
Este problema se puede resolver por medio del principio de la conservación de la energía, donde la energía potencial es igual a la energía cinética. Es decir a medida que el carrito desciende su energía potencial disminuye, pero su energía cinética aumenta.
Donde:
Ahora reemplazando: