The temperature is 370K.
The volume of a given fuel pattern is immediately proportional to its absolute temperature at regular pressure (Charles's law). The volume of a given amount of fuel is inversely proportional to its pressure whilst temperature is held steady (Boyle's regulation).
Density is immediately proportional to stress and indirectly proportional to temperature. As stress increases, with temperature constant, density will increase. Conversely when temperature increases, with strain regular, density decreases.
The equations describing those legal guidelines are unique cases of the best gasoline regulation, PV = NRT, wherein P is the pressure of the gas, V is its extent, n is the number of moles of the gas, T is its kelvin temperature, and R is the ideal (common) gas constant.
Learn more about pressure here: brainly.com/question/25736513
#SPJ4
Answer:
250000 μL
Explanation:
If 1 L = 1000 mL
Then X L = 250 mL
X = (1 × 250) / 1000 = 0.25 L
Now we can calculate the number of microliters (μL) in 0.25 L:
if 1 μL = 10⁻⁶ L
then X μL = 0.25 L
X = (1 × 0.25) / 10⁻⁶ =250000 μL
Answer:
C3H8 +5O2 arrow 3CO2 +4H2O
1) The forward reaction is N2 (g) + O2 (g) → 2NO
(that reaction requires special contitions because at normal pressures and temperatures N2 and O2 do not react to form another compound.
2) The equiblibrium equation is
N2 (g) + O2 (g) ⇄ 2NO
3) Then, the reverse reaction is
2NO → N2(g) + O2(g)
Answer: 2NO → N2(g) + O2(g)