Answer:
The factored expression is 2(x² + 5)(x + 3).
Step-by-step explanation:
Hey there!
We can use a factoring technique referred to as "grouping" to solve this problem.
Grouping is used for polynomials with four terms as a quick and easy factoring method to remove the GCF and get down to the initial terms that create the expression/function.
Grouping works in the following matter:
- Given equation: ax³ + bx² + cx + d
- Group a & b, c & d: (ax³ + bx²) + (cx + d)
- Pull GCFs and factors
Let's apply these steps to the given equation.
- Given equation: 2x³ + 6x² + 10x + 30
- Group a & b, c & d: (2x³ + 6x²) + (10x + 30)
- Pull GCFs and factors: 2x²(x + 3) + 10(x + 3)
As you'll see, we have a common term with both sides of the expression. This term, (x + 3), is a valuable asset to the factoring process. This is one of the factors for our expression.
Now, we use our GCFs to create another factor.
- List GCFs: 2x², 10
- Create a term: (2x² + 10)
Finally, we'll need to simplify this one by taking another GCF, 2.
- Pull GCF: 2(x² + 5)
Now that we have this term, we need to understand that this <em>could</em> also be factored further using imaginary numbers, but it is also acceptable to leave it in this form.
Therefore, we have our final factors: 2(x² + 5) and (x + 3).
However, when we factor, we place all of our terms together. This leaves us with the final answer: 2(x² + 5)(x + 3).
40.9267 is the square root
4 units, because a translation is a rigid motion, meaning it preserves segment length.
You already got the first two questions right: the group with the highest number of people unemployed / unemployment rate is the one with the highest bar in the respective histogram.
The two graph are related in this sense: take the first age group as reference. We know that 700 people from 16 to 19 are unemployed, and that those people represent 14% of the population, then we know that the 14% of the population between 16 and 19 is 700.
We can deduce that, if x is the number of people between 16 and 19, we have
So, by the relation between the two graphs, we can deduce the total population for each age group.
It is 300 miles per second