Answer:
It increases to three times it's original value.
Explanation:
B
Answer:
201.6 N
Explanation:
m = mass of disk shaped merry-go-round = 125 kg
r = radius of the disk = 1.50 m
w₀ = Initial angular speed = 0 rad/s
w = final angular speed = 0.700 rev/s = (0.700) (2π) rad/s = 4.296 rad/s
t = time interval = 2 s
α = Angular acceleration
Using the equation
w = w₀ + α t
4.296 = 0 + 2α
α = 2.15 rad/s²
I = moment of inertia of merry-go-round
Moment of inertia of merry-go-round is given as
I = (0.5) m r² = (0.5) (125) (1.50)² = 140.625 kgm²
F = constant force applied
Torque equation for the merry-go-round is given as
r F = I α
(1.50) F = (140.625) (2.15)
F = 201.6 N
Answer:
C) 16.3 ml
Explanation:
Density is equal to the ratio between the mass of an object and its volume:
where
m is the mass
V is the volume
In our problem, we know:
- density of aluminium:
- mass of the aluminium foil:
So we can re-arrange the equation above and use these data to find the volume of the piece of aluminium foil:
the answer is (A) the movement of the magnet relative to the coil
Answer:
a. a=33.34ms⁻², V=164.4m/s
Explanation:
Since the dragster started with zero velocity, de determine the acceleration using of the equations of motion.
Below are the data given
Distance, s=404.5m,
time taken,t=4.922secs
Using the equation
S=ut+1/2at²
where u is the initial velocity and u=0
Making the acceleration the subject of the formula, we arrive at
a=2s/t²
a=(2*404.5)/4.922²
a=33.34ms⁻².
To determine the velocity, we use
V=u+at
V=0+33.34ms⁻² *4.922sec
V=164.4m/s