Continent
jig-saw shapes when puzzled and combined together, formed one big continent -
Pangea, and was separated by drifts.
Fossil
comparisons of different species were discovered into two different, separated
continents in which when you combine them, they were one in the past.
Seismic,
volcanic, and geothermal activity are found along imagined plate
boundaries.
Plates
were actually rubbing against each other as evidence is seen on the formed
mountain ranges.
<span>
Paleomagnetism,
magnetic field placement in the layers of the rock are present.</span>
Answer:
So the force of attraction between the two objects is 3.3365*10^-6
Explanation:
m1=10kg
m2=50kg
d=10cm=0.1m
G=6.673*10^-11Nm^2kg^2
We have to find the force of attraction between them
F=Gm1m2/d^2
F=6.673*10^-11*10*50/0.1^2
F=3.3365*10^-8/0.01
F=3.3365*10^-6
A convex mirror makes a reflected light rays spread out.
Answer:
The given statement is false.
Explanation:
The spherical mirrors are the mirror that are a part of a sphere. Concave and convex mirrors are two types of spherical mirrors.
A concave mirror always forms real and inverted image. A convex mirror forms real and virtual images.
For concave mirror, the value of magnification is less that 1. Also, the focal length is negative for concave mirrors.
So, the given statement is false as a concave mirror always forms a real and inverted image. Hence, this is the required solution.
The final velocity () of the first astronaut will be greater than the <em>final velocity</em> of the second astronaut () to ensure that the total initial momentum of both astronauts is equal to the total final momentum of both astronauts <em>after throwing the ball</em>.
The given parameters;
- Mass of the first astronaut, = m₁
- Mass of the second astronaut, = m₂
- Initial velocity of the first astronaut, = v₁
- Initial velocity of the second astronaut, = v₂ > v₁
- Mass of the ball, = m
- Speed of the ball, = u
- Final velocity of the first astronaut, =
- Final velocity of the second astronaut, =
The final velocity of the first astronaut relative to the second astronaut after throwing the ball is determined by applying the principle of conservation of linear momentum.
if v₂ > v₁, then , to conserve the linear momentum.
Thus, the final velocity () of the first astronaut will be greater than the <em>final velocity</em> of the second astronaut () to ensure that the total initial momentum of both astronauts is equal to the total final momentum of both astronauts after throwing the ball.
Learn more here: brainly.com/question/24424291