Given the following equation; Cu + 2AgNO3 = Cu(NO3)2 + 2Ag, 48.97 grams of Cu are needed to react with 262g of AgNO3.
<h3>How to calculate mass of substances?</h3>
The mass of a substance can be calculated using the following steps:
Cu + 2AgNO3 = Cu(NO3)2 + 2Ag
1 mole of Cu react with 2 moles of AgNO3
- Molar mass of AgNO3 = 169.87 g/mol
- Molar mass of Cu = 63.5g/mol
moles of AgNO3 = 262g/169.87g/mol = 1.54mol
1.54 moles of AgNO3 will react with 0.77 moles of Cu.
mass of Cu = 0.77 × 63.5 = 48.97g
Therefore, given the following equation; Cu + 2AgNO3 = Cu(NO3)2 + 2Ag, 48.97 grams of Cu are needed to react with 262g of AgNO3.
Learn more about mass at: brainly.com/question/6876669
Answer:
Humus, which ranges in colour from brown to black, consists of about 60 percent carbon, 6 percent nitrogen, and smaller amounts of phosphorus and sulfur. As humus decomposes, its components are changed into forms usable by plants.
samira-
Answer:
See the attached image
Explanation:
The first step is the production of the <u>carboanion</u> in the compound. We will get the <u>negative charge</u> on the methyl group and the <u>positive charge</u> in the Li atom.
Then the carboanion can <u>attack the acetone</u>. The double bond of the oxo group would <u>delocalized</u> upon the oxygen, generating a positive charge in the carbon that can be attacked by the carboanion formaiting a <u>new C-C bond</u>.
Answer:
The energy of the orbitals are the same
Explanation:
For a free metal ion, all the d-orbitals are of the same energy. The five d-orbitals are said to be five fold degenerate in the free metal ion. Hence all the d-orbitals will possess the same energy irrespective of which one is first filled.
In an octahedral or tetrahedral crystal field, the d-orbitals will loose their degeneracy and become different in energy based on their orientation towards the ligands.