We need the half-life of C-14 which is 5,730 years. Now, we will need a half-life equation: elapsed time = half-life * log (bgng amt / ending amt) / log 2 We'll say beginning amount = 100 and ending amount = 41 elapsed time = 5,730 * log (100/41) / log 2 elapsed time = 5,730 * log (
<span>
<span>
<span>
2.4390243902
</span>
</span>
</span>
) / 0.30102999566 elapsed time = 5,730 * 0.38721614327 / 0.30102999566 elapsed time =
<span>
<span>
</span></span><span><span><span>5,730 * 1.2863041851
</span>
</span>
</span>
<span>elapsed time = 7,370.523 years