Given:
mass: 100 kg
height: 500 m
1 kJ = 1000 J
gravity = 9.8 m/s²
velocity before impact: v = √2gh ; v = √2 * 9.8 m/s² * 500 m ; v = 98.99494 m/s
KE = 1/2 m v²
KE = 1/2 * 100 kg * (98.99494 m/s)²
KE = 490,000 J
Pls. see attachment.
The feather's vertical position is determined by
We take the feather's starting position to be the origin, and the downward direction to be positive. Then
so the answer is D.
When the object is at the top of the hill it has the most potential energy. If it is sitting still, it has no kinetic energy. As the object begins to roll down the hill, it loses potential energy, but gains kinetic energy. The potential energy of the position of the object at the top of the hill is getting converted into kinetic energy. Hope this helped. :)
Kinetic, potential because, at the top of the ramp it’s going faster. Potential at the bottom of the ramp is potential because, it’s not doing any motion.