I don’t know I don’t know I don’t know
Answer:
Number of particles = 2.0 g*(6.0 x 10^23 particles/mol) / 20.18 g/mol
Option C is correct
Explanation:
Step 1: Data give
Mass of Ne = 2.0 grams
Molar mass of neon = 20.18 g/mol
Number of Avogadro = 6.0 *10^23 /mol
Step 2: Calculate number of moles of neon
Moles Ne = Mass of ne / Molar mass of ne
Moles Ne = 2.0 / 20.18 g/mol
Moles Ne = 0.099 moles
Step 3: Calculate nulber of particles
Number of particles = 6.022*10^23 / mol * 0.099 moles = 5.96 *10^22
Number of particles = 6.022*10^23 * (2.0g/ 20.18g/mol)
Number of particles = 2.0 g*(6.0 x 10^23 particles/mol) / 20.18 g/mol
Option C is correct
Answer:
The predominant intermolecular force in the liquid state of each of these compounds:
ammonia (NH3)
methane (CH4)
and nitrogen trifluoride (NF3)
Explanation:
The types of intermolecular forces:
1.Hydrogen bonding: It is a weak electrostatic force of attraction that exists between the hydrogen atom and a highly electronegative atom like N,O,F.
2.Dipole-dipole interactions: They exist between the oppositely charged dipoles in a polar covalent molecule.
3. London dispersion forces exist between all the atoms and molecules.
NH3 ammonia consists of intermolecular H-bonding.
Methane has London dispersion forces.
Because both carbon and hydrogen has almost similar electronegativity values.
NF3 has dipole-dipole interactions due to the electronegativity variations between nitrogen and fluorine.