Answer:
3.78 m/s
Explanation:
Recall that the formula for average speed is given by
Speed = Distance ÷ Time taken
Where,
Speed = we are asked to find this
Distance = given as 340m
Time taken = 1.5 min = 1.5 x 60 = 90 seconds
Substituting the values into the equation:
Speed = Distance ÷ Time taken
= 340 meters ÷ 90 seconds
= 3.777777 m/s
= 3.78 m/s (round to nearest hundredth)
Abyssal plain
Abyssal fan
Archipelago
Atoll
Arch
Without counting wind resistance, They will both reach the ground at the same time. If we apply the concept of kinematics, such as the equation vf^2=vi^2 + 2ad. This equation doesn't count how big or how heavy the mass is, it only focuses on how fast where they in the start and how far are both of them from the ground. So if they both have the same distance and same initial veloctity, then they will reach the ground at the same time.
For example, Try dropping a pen and a paper(Vertically) at the same height, you'll see they'll reach the ground at the same time.
If you count wind resistance, the heavier ball will hit the ground faster, because the air molecules will resist the lighter ball compared to the heavier ball.
Answer:
(a) B = 5.6 micro Tesla
Explanation:
Current in the wire, i = 140 A
distance, r = 5 m
The formula for the magnetic field at a distance r due to the current carrying wire
B = 5.6 x 10^-6 Tesla
B = 5.6 micro Tesla
(b) As the magnetic field of earth at this site is 20 micro tesla so the magnetic field due to current carrying wire interfere the magnetic compass.
Gradpoint ? And the answer is water.