Answer:
0.21 g
Explanation:
The equation of the reaction is;
NaCl(aq) + AgNO3(aq) -----> NaNO3(aq) + AgCl(s)
Number of moles of NaCl= 0.0860 g /58.5 g/mol = 0.00147 moles
Number of moles of AgNO3 = 30/1000 L × 0.050 M = 0.0015 moles
Since the reaction is 1:1, NaCl is the limiting reactant.
1 mole of NaCl yields 1 mole of AgCl
0.00147 moles of NaCl yields 0.00147 moles of AgCl
Mass of precipitate formed = 0.00147 moles of AgCl × 143.32 g/mol
= 0.21 g
It will double
Key
P = pressure of the gas
n= number of moles of the gas
V= volume of the gas
R = the gas constant
T= absolute temperature of the gas
If V is halved when n and T remain the same
Explanation:
fit of the continents, paleoclimate indicators, truncated?
Answer: The concentration of ions in the resulting solution is 1.16 M.
Explanation:
To calculate the molarity of the solution after mixing 2 solutions, we use the equation:
where,
are the n-factor, molarity and volume of the
are the n-factor, molarity and volume of the
We are given:
Putting all the values in above equation, we get
The concentration of ions in the resulting solution will be same as the molarity of solution which is 1.16 M.
Hence, the concentration of ions in the resulting solution is 1.16 M.
Answer:
If you see in the image above, there is an unbalance force applied while playing tug of war. Since it is 1 vs 2, there is a greater net force in the right side then the left side. If it was 2 vs 2 or 1 vs 1, then they are appling balance force. You can also see in the picture that the arrows are pointing outwards (--->) rather then inwards (<---) because you are pulling the rope not pushing the rope. If you add one person on the left side, then the newtons which is 20N will become to 35N and will be balanced, but since there in only 1 person, there is less force on the left side, the newtons gets subtracted having only 20N. Since you are pulling the rope, the friction is opposite (<---). Since you are pulling the rope, you are using Kinetic force and the rope stays in potential force since it stays constant.
Hope this helps, thank you :) and I am not sure about magnitude I think you can that since there is greater force on the right side, there is more magnitude there.