Answer:
<em>R { 397.59, 4900.69, 7152.24 }</em>
Step-by-step explanation:
~ Knowing that the Domain of the function ( D ) stands for x, and the Range of the function ( R ) stands for y ~
1. Let us substitute values for ( x ) from the Domain { 3, 17, 24 ) and solve for y in the equation f ( x ) = 321.65x - 567.36 to receive the Range
2. To do this, take the first value 3. Plug this into the function f ( x ) = 321.65x - 567.36 ⇒ f ( 3 ) = 321.65 ( 3 ) - 567.36 ⇒ f ( 3 ) = 397.59 ⇒ <em>f ( x ) = 397.59</em>
3. Now let us do the same with the remaining Domain values ⇒ Plug 17 into the functionality f ( x ) = 321.65x - 567.36 ⇒ f ( 17 ) = 321.65 ( 17 ) - 567.36 ⇒ f ( 3 ) = 4900.69 ⇒ <em>f ( x ) = 4900.69</em>
4. Plug 24 into the functionality f ( x ) = 321.65x - 567.36 ⇒ f ( 24 ) = 321.65 ( 24 ) - 567.36 ⇒ f ( 24 ) = 7152.24 ⇒ <em>f ( x ) = 7152.24</em>