Answer:
27 min
Explanation:
The kinetics of an enzyme-catalyzed reaction can be determined by the equation of Michaelis-Menten:
Where v is the velocity in the equilibrium, vmax is the maximum velocity of the reaction (which is directed proportionally of the amount of the enzyme), Km is the equilibrium constant and [S] is the concentration of the substrate.
So, initially, the velocity of the formation of the substrate is 12μmol/9min = 1.33 μmol/min
If Km is a thousand times smaller then [S], then
v = vmax[S]/[S]
v = vmax
vmax = 1.33 μmol/min
For the new experiment, with one-third of the enzyme, the maximum velocity must be one third too, so:
vmax = 1.33/3 = 0.443 μmol/min
Km will still be much smaller then [S], so
v = vmax
v = 0.443 μmol/min
For 12 μmol formed:
0.443 = 12/t
t = 12/0.443
t = 27 min
Answer:
option A
I think so good night sweet dreams
Answer:
it is refined petrolium used a sfuel for intetnal combustion engines
Explanation:
in simple words petrol
Answer:224
Explanation:
We should answer it with Stoichiometry
We say: 20 g H2× (1 mol/ 2g)× ( 22.4 lit/ 1 mol) = 224
Means: we have 20 grams and every 2g H2, equals to 1 mol of it and every 1 mol of H2, equals to 22.4 lit( because of STP)
hope you got this:)
The elements in each group have the same number of electrons in the outer orbital. Or also called valence electrons. Khan academy has a great video online explaining why this happens. (It only happens for main group elements). Here is a link (sorry you can’t click it in Brainly) https://www.khanacademy.org/science/chemistry/periodic-table/copy-of-periodic-table-of-elements/v/periodic-table-valence-electrons. Feel free to message me for a better explanation, I would explain now but I’m not sure how much you know about this. If you know how to write an electron configuration you can see how all the electron configurations for the same group (not the transitional metals only the main groups) have the same number of valence electrons. I hope that helped, sorry I was vague about the explanation :)