Answer:
The 20th century saw huge advances in our understanding and use of the nucleus. For instance, in 1939 scientists Otto Hahn, Lise Meitner and Otto Frisch discovered nuclear fission – a process by which radioactive materials release energy when they are induced to split.
Realising the huge amount of energy that such a reaction produces, scientists were tasked with developing this new knowledge initially for harm in nuclear weapons. Just six years after fission’s discovery, it was harnessed in the atom bombs that destroyed the Japanese cities Hiroshima and Nagasaki, and controversially ended the Second World War. Later, much more powerful hydrogen bombs were developed that combined fission with the process powering the Sun – fusion.
Hope this helps! PLEASE GIVE ME BRAINLIEST!!!!! =)
Answer : The enthalpy of the given reaction will be, -1048.6 kJ
Explanation :
According to Hess’s law of constant heat summation, the heat absorbed or evolved in a given chemical equation is the same whether the process occurs in one step or several steps.
The main reaction is:
The intermediate balanced chemical reactions are:
(1)
(2)
(3)
(4)
(5)
Now reversing reaction 2, multiplying reaction 3 by 4, reversing reaction 1 and multiplying by 2, reversing reaction 5 and multiplying by 2 and then adding all the equations, we get :
(1)
(2)
(3)
(4)
(5)
The expression for enthalpy of main reaction will be:
Therefore, the enthalpy of the given reaction will be, -1048.6 kJ
Propane torch is lit inside a hot air balloon during pre-flight preparation because the heat from the touch is needed to heat the cold air inside the balloon, so that the air will expand and become less dense and rise, thus providing a lift for the balloon. This is line with charle's law, which states that, the volume of a fixed mass of ideal gas is directly proportional to the absolute temperature. This law implies that, as the temperature of the air inside the balloon increase, the volume of the balloon also increases.
Answer:The molar mass is the mass of a given chemical element or chemical compound (g) divided by the amount of substance (mol).
The molar mass of a compound can be calculated by adding the standard atomic masses (in g/mol) of the constituent atoms.
Explanation: