Supposing a normal distribution, we find that:
The diameter of the smallest tree that is an outlier is of 16.36 inches.
--------------------------------
We suppose that tree diameters are normally distributed with <u>mean 8.8 inches and standard deviation 2.8 inches.</u>
<u />
In a normal distribution with mean and standard deviation , the z-score of a measure X is given by:
- The Z-score measures how many standard deviations the measure is from the mean.
- After finding the z-score, we look at the z-score table and find the p-value associated with this z-score, which is the percentile of X.<u>
</u>
<u />
In this problem:
- Mean of 8.8 inches, thus .
- Standard deviation of 2.8 inches, thus .
<u />
The interquartile range(IQR) is the difference between the 75th and the 25th percentile.
<u />
25th percentile:
- X when Z has a p-value of 0.25, so X when Z = -0.675.
75th percentile:
- X when Z has a p-value of 0.75, so X when Z = 0.675.
The IQR is:
What is the diameter, in inches, of the smallest tree that is an outlier?
- The diameter is <u>1.5IQR above the 75th percentile</u>, thus:
The diameter of the smallest tree that is an outlier is of 16.36 inches.
<u />
A similar problem is given at brainly.com/question/15683591
The box of 100 would be the better deal, considering buying 2 boxes of 50 would turn out to be $47.00
Answer:
Step-by-step explanation:
1/16
2^-2 * 2^-2
2^2 * 2^-6
1/4^-2
Answer:
1/9x - y = -5
General Formulas and Concepts:
<u>Pre-Algebra</u>
<u>Algebra I</u>
Standard Form: Ax + By = C
Slope-Intercept Form: y = mx + b
Step-by-step explanation:
<u>Step 1: Define equation</u>
Slope-Intercept Form: y = 1/9x + 5
<u>Step 2: Find Standard Form</u>
- Subtract 1/9x on both sides: -1/9x + y = 5
- Multiply -1 on both sides: 1/9x - y = -5