Answer:
Explanation:
We are given that
Initial velocity of baseball=u=-41m/s
Because final and initial velocity are in opposite direction
Final velocity of baseball=v=47m/s
Time=t=1.9 ms=
1 ms=
We have to find the acceleration .
We know that
Acceleration=
Using the formula
Acceleration=
Acceleration=
Answer:
298rad/s and 116.96 ohms
Explanation:
Given an L-R-C series circuit where
L = 0.450 H,
C=2.50×10^−5F, and resistance R= 0
In this situation we have a simple LC circuit with angular frequency
Wo = 1√LC
= 1/√(0.450)(2.50×10^-5)
= 1/√0.00001125
= 1/0.003354
= 298rad/s
B) Now we need to find the value of R such that it gives a 10% decrease in angular frequency.
Wi/W° = (100-10)/100
Wi/W° = 90/100
Wi/W° = 0.90 ............... 1
Angular frequency of oscillation
The complete aspect of the solution is attached, please check.
Answer:
a = 0.3 m/s²
Explanation:
Given: 45 N, 150 kg
To find: a
Formula:
Solution: To find a, divide the force by the weight
A = F ÷ m
= 45 ÷ 150
= 0.3 m/s²
Newtons are derived units, equal to 1 kg-m/s². In other words, a single Newton is equal to the force needed to accelerate one kilogram one meter per second squared.
Answer:
Where the electric potential is constant, the strength of the electric field is zero.
Explanation:
As a test charge moves in a given direction, the rate of change of the electric potential of the charge gives the potential gradient whose negative value is the same as the value of the electric field. In other words, the negative of the slope or gradient of electric potential (V) in a direction, say x, gives the electric field (Eₓ) in that direction. i.e
Eₓ = - dV / dx ----------(i)
From equation (i) above, if electric potential (V) is constant, then the differential (which is the electric field) gives zero.
<em>Therefore, a constant electric potential means that electric field is zero.</em>