Answer:
Increasing the surface area of a reactant increases the frequency of collisions and increases the reaction rate. Several smaller particles have more surface area than one large particle. The more surface area that is available for particles to collide, the faster the reaction will occur.
Explanation:
:)
Answer:
Enthalpy of vaporization = 30.8 kj/mol
Explanation:
Given data:
Mass of benzene = 95.0 g
Heat evolved = 37.5 KJ
Enthalpy of vaporization = ?
Solution:
Molar mass of benzene = 78 g/mol
Number of moles = mass/ molar mass
Number of moles = 95 g/ 78 g/mol
Number of moles = 1.218 mol
Enthalpy of vaporization = 37.5 KJ/1.218 mol
Enthalpy of vaporization = 30.8 kj/mol
Here, the three different notation of the p-orbital in different sub-level have to generate
The value of azimuthal quantum number (l) for -p orbital is 1. We know that the magnetic quantum number depends upon the value of l, which are -l to +l.
Thus for p-orbital the possible magnetic quantum numbers are- -1, 0, +1. So there will be three orbitals for p orbitals, which are designated as , and in space.
The three p-orbital can be distinguish by the quantum numbers as-
For 2p orbitals (principal quantum number is 2)
1) n = 2, l = 1, m = -1
2) n = 2, l = 1, m = 0
3) n = 2, l = 1, m = +1
Thus the notation of different p-orbitals in the sub level are determined.