Answer:
An expression that is equal to 3/5 is 3÷5.
Step-by-step explanation:
3/5 is really 3 things are being split amongst 5 things/groups. When you split things .up, it's division. Therefore, the expression would be 3÷5
Answer:
5.4 inches
Step-by-step explanation:
This is all about ratios proportions and similarity.
First the 8.5 stays the same you scale only the 11 down to 7
because it says to scale length down to 7
so once you scale it down you should get 5.4 inches for the width once you plug it back in
V(cylinder)=πR²H
Radius of the cylinder R=x, height of the cylinder H=y.
We can write for the cylinder
V(cylinder)=πx²y
V(cone) =(1/3)πr²h
Radius of the cone r=2x.
We can write for the cone
V(cone)= (1/3)π(2x)²h=(1/3)π *4*x²h
V(cylinder) =V(cone)
πx²y=(1/3)π *4*x²h
y=(4/3)*h
h=(3/4)*y
The order to us solve is:
- Parentheses
- Multiplication
- Sum and subtraction
Let's go:
Therefore, the result is 62.2.
At the start, the tank contains
(0.02 g/L) * (1000 L) = 20 g
of chlorine. Let <em>c</em> (<em>t</em> ) denote the amount of chlorine (in grams) in the tank at time <em>t </em>.
Pure water is pumped into the tank, so no chlorine is flowing into it, but is flowing out at a rate of
(<em>c</em> (<em>t</em> )/(1000 + (10 - 25)<em>t</em> ) g/L) * (25 L/s) = 5<em>c</em> (<em>t</em> ) /(200 - 3<em>t</em> ) g/s
In case it's unclear why this is the case:
The amount of liquid in the tank at the start is 1000 L. If water is pumped in at a rate of 10 L/s, then after <em>t</em> s there will be (1000 + 10<em>t</em> ) L of liquid in the tank. But we're also removing 25 L from the tank per second, so there is a net "gain" of 10 - 25 = -15 L of liquid each second. So the volume of liquid in the tank at time <em>t</em> is (1000 - 15<em>t </em>) L. Then the concentration of chlorine per unit volume is <em>c</em> (<em>t</em> ) divided by this volume.
So the amount of chlorine in the tank changes according to
which is a linear equation. Move the non-derivative term to the left, then multiply both sides by the integrating factor 1/(200 - 5<em>t</em> )^(5/3), then integrate both sides to solve for <em>c</em> (<em>t</em> ):
There are 20 g of chlorine at the start, so <em>c</em> (0) = 20. Use this to solve for <em>C</em> :