Answer:
<u>150</u>
Step-by-step explanation:
So I will shorten Eric, and Bob's names as E, and B.
So the equations are this
B-E = B+E - 240, E as Eric, and B as Bob, and this E+B=9(E-B)
Move the variables and you get
-2E =- 240
Just divide them both by -2
and E=120
So when we know the value of E we can just plug it into the 1st question
120+B=9B+1080
Moves the Variables and numbers to the other side
8B=1200
1200/8= 150
B=150
There is Bob's weight
Answer:
x < -6
Step-by-step explanation:
quick explanation: when you transfer (-9) to the other side it becomes +9.
Therefore, -15+9= -6
We know that
[area of a regular hexagon]=6*[area of one <span>equilateral triangle]
</span>210.44=6*[area of one equilateral triangle]
[area of one equilateral triangle]=210.44/6-----> 35.07 cm²
[area of one equilateral triangle]=b*h/2
h=7.794 cm
b=2*area/h------> b=2*35.07/7.794------>b= 9 cm
the length side of a regular hexagon is 9 cm
<span>applying the Pythagorean theorem
</span>r²=h²+(b/2)²------>r²=7.794²+(4.5)²------> r²=81--------> r=9 cm
<span>this last step was not necessary because the radius is equal to the hexagon side------> (remember the equilateral triangles)
</span>
the answer is
the radius is 9 cm
Answer:
3
Step-by-step explanation:
3 is the only number here with factors of itself (3) and 1
Answer:
y= -2x -8
Step-by-step explanation:
I will be writing the equation of the perpendicular bisector in the slope-intercept form which is y=mx +c, where m is the gradient and c is the y-intercept.
A perpendicular bisector is a line that cuts through the other line perpendicularly (at 90°) and into 2 equal parts (and thus passes through the midpoint of the line).
Let's find the gradient of the given line.
Gradient of given line
The product of the gradients of 2 perpendicular lines is -1.
(½)(gradient of perpendicular bisector)= -1
Gradient of perpendicular bisector
= -1 ÷(½)
= -1(2)
= -2
Substitute m= -2 into the equation:
y= -2x +c
To find the value of c, we need to substitute a pair of coordinates that the line passes through into the equation. Since the perpendicular bisector passes through the midpoint of the given line, let's find the coordinates of the midpoint.
Midpoint of given line
Substituting (-3, -2) into the equation:
-2= -2(-3) +c
-2= 6 +c
c= -2 -6 <em>(</em><em>-</em><em>6</em><em> </em><em>on both</em><em> </em><em>sides</em><em>)</em>
c= -8
Thus, the equation of the perpendicular bisector is y= -2x -8.