To prepare 350 mL of 0.100 M solution from a 1.50 M
solution, we simply have to use the formula:
M1 V1 = M2 V2
So from the formula, we will know how much volume of the
1.50 M we actually need.
1.50 M * V1 = 0.100 M * 350 mL
V1 = 23.33 mL
So we need 23.33 mL of the 1.50 M solution. We dilute it
with water to a volume of 350 mL. So water needed is:
350 mL – 23.33 mL = 326.67 mL water
Steps:
1. Take 23.33 mL of 1.50 M solution
<span>2. Add 326.67 mL of water to make 350 mL of 0.100 M
solution</span>
Answer:
P₄O₆
Explanation:
The molecular formula is a whole number multiple of the empirical formula. that is, if the mole wt is 219.9 gms/mole and the empirical formula weight is 110 gms/mole*, then the whole number multiple is 219.9/110 = 2 => Molecular formula => (P₂O₄)₂ => P₄O₆.
Answer:
2C3H8O + 9O2 ==> 6CO2 + 8H2O ... balanced equation
moles propanol = 5.26 g x 1 mol/60.1 g = 0.0875 moles
moles O2 = 31.8 g x 1 mol/31.9 g = 0.997 moles O2
Propanol is limiting based on the mol ratio in balance equation of 2 : 9
To find mass of O2 (excess reagent) left over, we will first find moles O2 used up.
moles O2 used = 0.0875 mol propanol x 9 mol O2/2 mol propanol = 0.394 moles O2 used
moles O2 left over = 0.997 mol - 0.394 mol = 0.603 mol O2 left
mass O2 left = 0.603 mol O2 x 32 g/mol = 19.3 g O2 left over
It would be in the fourth shell.
Answer:
Explanation:
Gravity:
It is the force by which the elements of matter pulls together.
Explanation:
The gravity is depend upon the mass of matter. The more mass of object the more will be the gravitational force.
The earth is most heavier than all other matter that's why all matter pulls towards the earth.
For example;
when we walk on the earth, it pull us. Our mass is less as compared to the earth that's why we fall back on the earth instead of moving upward because our pull is negligible because of greater difference in masses. The earth mass is very high.
The gravitational force is inversely proportional to the square distance of interacting objects.
As the two objects are more distance apart from each other the less will be the gravitational force.