Answer:
0.171 M
Explanation:
Step 1: Given data
- Mass of H₃PO₄ (solute): 3.35 g
- Volume of solution (V): 200 mL
Step 2: Calculate the moles of solute
The molar mass of H₃PO₄ is 97.99 g/mol.
3.35 g × 1 mol/97.99 g = 0.0342 mol
Step 3: Convert "V" to liters
We will use the conversion factor 1 L = 1000 mL.
200 mL × 1 L/1000 mL = 0.200 L
Step 4: Calculate the molarity of the solution
We will use the definition of molarity.
M = moles of solute / liters of solution
M = 0.0342 mol/0.200 L = 0.171 M
Scientific laws and theories have different jobs to do. A scientific law predicts the results of certain initial conditions. ... In contrast, a theory tries to provide the most logical explanation about why things happen as they do.
Answer: I think the answer is C. NaCl and H2O
Explanation: I’m not sure tho
B, radon is correct. Interestingly, it often collects in basements from radioactive decay of rocks such as granite that contain uranium. Because it is an unreactive noble gas and because it is denser than air it sits in basements and must be pumped out. It collects in human lungs and is the second leading cause of lung cancer behind smoking.