Answer:
ms⁻¹
Explanation:
= diameter of merry-go-round = 4 m
= radius of merry-go-round = = = 2 m
= moment of inertia = 500 kgm²
= angular velocity of merry-go-round before ryan jumps = 2.0 rad/s
= angular velocity of merry-go-round after ryan jumps = 0 rad/s
= velocity of ryan before jumping onto the merry-go-round
= mass of ryan = 70 kg
Using conservation of angular momentum
ms⁻¹
Answer:
Explanation:
For entry of light into tube of unknown refractive index
sin ( 90 - 25 ) / sinr = μ , μ is the refractive index of the tube , r is angle of refraction in the medium of tube
r = 90 - C where C is critical angle between μ and body medium in which tube will be inserted.
sin ( 90 - 25 ) / sin( 90 - C) = μ
sin65 / cos C = μ
sinC = 1.33 / μ , where 1.33 is the refractive index of body liquid.
From these equations
sin65 / cos C = 1.33 / sinC
TanC = 1.33 / sin65
TanC = 1.33 / .9063
TanC = 1.4675
C= 56°
sinC = 1.33 / μ
μ = 1.33 / sinC
= 1.33 / sin56
= 1.33 / .829
μ = 1.6 Ans
Answer:
No work is performed or required in moving the positive charge from point A to point B.
Explanation:
Lets take
Q= Positive charge which move from point A to point B along
Voltage difference,ΔV =V₁ - V₂
The work done
W = Q . ΔV
Given that charge is moved from point A to point B along an equipotential surface.It means that voltage difference is zero.
ΔV = 0
So
W = Q . ΔV
W = Q x 0
W= 0 J
So work is zero.
true if you are refering to the desing of the experimnt as it does identify the variable