Answer:
λ = 1360 m
Explanation:
Given data:
frequency of driving nails is given as 1 stroke per second mean at every 0.25 sec she hit the nails
speed of sound is given as 340 m/s
we know that the wave equation is given as
Speed = frequency × wavelength,
v = f × λ
where,
v = speed in meters/second (m/s)
f = frequency in Hertz (Hz)
substituing value to get wavelength of her driving nails
λ = 1360 m
Answer:
a) 3.43 m/s
Explanation:
Due to the law of conservation of momentum, the total momentum of the bullet - rifle system must be conserved.
The total momentum before the bullet is shot is zero, because they are both at rest, so:
Instead the total momentum of the system after the shot is:
where:
m = 0.006 kg is the mass of the bullet
M = 1.4 kg is the mass of the rifle
v = 800 m/s is the velocity of the bullet
V is the recoil velocity of the rifle
The total momentum is conserved, therefore we can write:
Which means:
Solving for V, we can find the recoil velocity of the rifle:
where the negative sign indicates that the velocity is opposite to direction of the bullet: so the recoil speed is
a) 3.43 m/s
Answer:
Balanced force
Explanation:
Balanced Forces, When forces are in balance, acceleration is zero. Velocity is constant and there is no net or unbalanced force. ... Although friction is acting on the person, there is no change in velocity and friction is not a net force in this case. Friction is only a net force if it changes the velocity of a mass.