That element is manganese. As they are in same horizontal row (period) and are next to each other. That is why they show same properties.
Hope this helps xox :)
<u>Answer:</u> The value of equilibrium constant for the given reaction is 56.61
<u>Explanation:</u>
We are given:
Initial moles of iodine gas = 0.100 moles
Initial moles of hydrogen gas = 0.100 moles
Volume of container = 1.00 L
Molarity of the solution is calculated by the equation:
Equilibrium concentration of iodine gas = 0.0210 M
The chemical equation for the reaction of iodine gas and hydrogen gas follows:
<u>Initial:</u> 0.1 0.1
<u>At eqllm:</u> 0.1-x 0.1-x 2x
Evaluating the value of 'x'
The expression of for above equation follows:
Putting values in above expression, we get:
Hence, the value of equilibrium constant for the given reaction is 56.61
Anode- oxidization
Cathode-reduction
Answer:
a) ΔGº= -49,9 KJ/mol = - 50 KJ/mol
b) The reaction goes to the right to formation of products
c) ΔG= 84,42 KJ/mol. The direction is to reactive, to the left
Explanation:
a) ΔGº= - RTLnKf
You need to convert Cº to K. 25ºC=298K
Then, ΔGº= - 3,814 J/molK * 298K* Ln(5.6 *10^8)= - 49906 J/mol = -49,9 KJ/mol = - 50 KJ/mol
b) The ΔGº < 0, that means the direct reaction is spontaneous when te reactive and products are in standard state. In other words the reaction goes to the right, to formation of products
c) The general ecuation for chemical reaction is aA + bB → cD + dD. Thus
ΔG=ΔGº + RTLn (([C]^c*[D]^d)/[A]^a*[B]^b)
In this case,
ΔG=ΔGº + RTLn ([Ni(NH3)62+] / [Ni2+]*[NH3]^6 )= 84417 J/mol =84,42 KJ/mol
ΔG >0 means the reaction isn't spontaneous in the direction of the products. Therefore the direction is to reactive, to the left