<span>A wave with a large amplitude has a lot of a.vibration b.speed <u> c.energy</u></span>
Answer:
F = 4.147 × 10^23
v = 1.31 × 10^4
Explanation:
Given the following :
mass of Jupiter (m1) = 1.9 × 10^27
Mass of sun (m2) = 1.99 × 10^30
Distance between sun and jupiter (r) = 7.8 × 10^11m
Gravitational force (F) :
(Gm1m2) / r^2
Where ; G = 6.673×10^-11 ( Gravitational constant)
F = [(6.673×10^-11) × (1.9 × 10^27) × (1.99 × 10^30)] / (7.8 × 10^11)^2
F = [25.231 × 10^(-11+27+30)] / (60.84 × 10^22)
F = (25.231 × 10^46) / (60.84 × 10^22)
F = 3.235 × 10^(46 - 22)
F = 0.4147 × 10^24
F = 4.147 × 10^23
Speed of Jupiter (v) :
v = √(Fr) / m1
v = √[(4.147 × 10^23) × (7.8 × 10^11) / (1.9 × 10^27)
v = √32.3466 × 10^(23+11) / 1.9 × 10^27
v = √32.3466× 10^34 / 1.9 × 10^27
v = √17. 023 × 10^34-27
v = √17.023 × 10^7
v = 13047.221
v = 1.31 × 10^4
<span>Newton's law of gravitation is attractive, whereas Coulomb's law is attractive or repulsive. Both are proportional to the inverse square of distance.</span>
Answer:
(a) False
(b) True
(c) True
(d) True
(e) True
(f) True
Explanation:
(a) Maxwell's equations not only applies to constant fields but it applies to both the fields, i.e., Time variant field as well as Time Invariant field.
(b) We make use of the Modified form of the Ampere's law and Faraday's Law to derive the wave equation.
(c) Electromagnetic waves contains both the electric and magnetic fields and these fields oscillates at an angle of to the direction of wave propagation.
(d) In free space both the electric and magnetic fields are in phase while considering electromagnetic waves.
(e) In free space or vacuum, the expression for the speed of light in terms of electric and magnetic field is given as:
Thus the ratio of the magnitudes of the electric and magnetic field vectors are equal to the speed of light in free space.
(f) In free space or in vacuum the energy density of the electromagnetic wave is divided equally in both the fields and hence are equal.