The concentration of [CI-] : 0.617 M
<h3>Further explanation</h3>
FeCl₃ dissolved in 450 mL of solution(will dissociate )
Reaction
FeCl₃⇒Fe³⁺+3Cl⁻
- mol FeCl₃(MW=162,2 g/mol)
Answer:
a. The student performed the splint test incorrectly. He should of observed a popping sound when the splint was placed in the test tube.
Explanation:
It is given that a student performed an experiment where he dropped a nickel metal in to HCl solution. He observed the reaction and performed a splint test in the test tube that is filled with a gas which is formed while Nickle is dropped into the solution of HCl.
But the experiment that the student performed was incorrect. He must have observed the popping sound when the splint was placed in the test tube.
When the splint was added to the gas splint flared up. The hydrogen gas pops out when exposed to the flame.
Thus the correct option is (a).
A Anything that has mass and takes up space
Answer:
1.7 × 10 ^42
Explanation:
Using Nernst equation
E°cell = RT/nF Inq
at equilibrium
Q=K
E°cell = 0.0257 /n Ink= 0.0592/n log K
Fe2+(aq)+2e−→Fe(s) E∘= −0.45 V
Ag+aq)+e−→Ag(s) E∘= 0.80 V
Fe(s)+2Ag+(aq)→Fe2+(aq)+2Ag(s)
balance the reaction
Fe → Fe²⁺ + 2e⁻ reversing for oxidation E° = 0.45 v
2 Ag⁺ +2e⁻ → 2Ag
n = 2 moles and K = equilibrium constant
E° cell = 0.80 + 0.45 = 1.25 V
E° cell = (0.0592 / n) log K
substitute the value into the equations and solve for K
(1.25 × 2) / 0.0592 = log K
42.23 = log K
k = 10^ 42.23
K = 1.7 × 10 ^42
Answer:
Yes. Weight is the product of mass times gravitational acceleration. So all you have to do is vary the gravitational field and you vary weight.
Explanation: