The two non negative real numbers with a sum of 64 that have the largest possible product are; 32 and 32.
<h3>How do we solve the nonnegative real numbers?</h3>
Let the two numbers be x and y.
Thus, if their sum is 64, then we have;
x + y = 64
y = 64 - x
Their product will be;
P = xy
Putting (64 - x) for y in the product equation we have;
P = (64 - x)x
P = 64x - x²
Since the product is maximum, let us find the derivative;
P'(x) = 64 - 2x
At P'(x) = 0, we have;
64 - 2x = 0
2x = 64
x = 64/2
x = 32
Thus; y = 64 - 32
y = 32
Read more about nonnegative real numbers
brainly.com/question/9580755
#SPJ4
Sum would be 0 because the sum of additional inverses is always zero and the h would be on -1.4
First you gotta remove all parentheses by multiplying the factors next remove all grouping if the terms are containing exponents then you combine all terms and lastly you combine the constants
Answer:
D. Continue cutting smaller and smaller slices.