RADIATION. Radio waves, microwaves, IR, light, UV, x-rays, GAMMA waves etc are ALL Electromagnetic radiation. The difference between ALL the above is the frequency, I.E. The number of waves per second. The higher the frequency the more energy.
In one mole of glucose 38 ATP energy is stored this accounts for only 40 per-cent of the total energy in glucose.
Explanation:
In standard conditions, during the cellular respiration 1 mole of Glucose in the presence of oxygen produces 36 or 38 ATPs. This accounts for only 40% of the total energy as the remaining 60 per-cent of the energy is dissipated as heat.
I mole of glucose enters the glycolysis step of aerobic cellular respiration which after oxidative phosphorylation and Electron transport chain would give 38 ATP molecules.
It can be said that only 38.3% of energy is put in ATP molecules.
Answer: 12.78ml
Explanation:
Given that:
Volume of KOH Vb = ?
Concentration of KOH Cb = 0.149 m
Volume of HBr Va = 17.0 ml
Concentration of HBr Ca = 0.112 m
The equation is as follows
HBr(aq) + KOH(aq) --> KBr(aq) + H2O(l)
and the mole ratio of HBr to KOH is 1:1 (Na, Number of moles of HBr is 1; while Nb, number of moles of KOH is 1)
Then, to get the volume of a 0.149 m potassium hydroxide solution Vb, apply the formula (Ca x Va)/(Cb x Vb) = Na/Nb
(0.112 x 17.0)/(0.149 x Vb) = 1/1
(1.904)/(0.149Vb) = 1/1
cross multiply
1.904 x 1 = 0.149Vb x 1
1.904 = 0.149Vb
divide both sides by 0.149
1.904/0.149 = 0.149Vb/0.149
12.78ml = Vb
Thus, 12.78 ml of potassium hydroxide solution is required.
1 mole has 6.02*10^23 molecules in it.
1 nickel (II) chloride molecule, NiCl2, has 1 Ni atom in it.
so 1 mole of nickel (II) chloride molecule has 1 mole of Ni atom in it.
so 100 moles of nickel (II) chloride molecule has 100*6.02*10^23
= 6.02*10^25 Ni atom in it.