Z4+x33[23+32)
JanalN
Uhajaia
Jain
Answer:
So about 95 percent of the observations lie between 480 and 520.
Step-by-step explanation:
The Empirical Rule states that, for a normally distributed random variable:
68% of the measures are within 1 standard deviation of the mean.
95% of the measures are within 2 standard deviations of the mean.
99.7% of the measures are within 3 standard deviations of the mean.
In this problem, we have that:
The mean is 500 and the standard deviation is 10.
About 95 percent of the observations lie between what two values?
From the Empirical Rule, this is from 500 - 2*10 = 480 to 500 + 2*10 = 520.
So about 95 percent of the observations lie between 480 and 520.
Answer:
Step-by-step explanation:
We can calculate this confidence interval using the population proportion calculation. To do this we must find p' and q'
Where p' = 14/100= 0.14 (no of left handed sample promotion)
q' = 1-p' = 1-0.14= 0.86
Since the requested confidence level is CL = 0.98, then α = 1 – CL = 1 – 0.98 = 0.02/2= 0.01, z (0.01) = 2.326
Using p' - z alpha √(p'q'/n) for the lower interval - 0.14-2.326√(0.14*0.86/100)
= -2.186√0.00325
= -2.186*0.057
= 12.46%
Using p' + z alpha √(p'q'/n)
0.14+2.326√(0.14*0.86/100)
= 0.466*0.057
= 26.5%
Thus we estimate with 98% confidence that between 12% and 27% of all Americans are left handed.
If you simplify, the first step is to Multiple -1 by the -2 and - 2 In the parenthesis.
Which will give you -3 + 2 + 2
Then you add them together. Then solve 4 -3 = 1