Answer:
The net ionic equation is as follows:
HCN(aq) + OH-(aq) ----> H20(l) + CN-(aq)
Explanation:
The reaction between Hydrocyanic acid, HCN, and sodium hydroxide is a neutralization reaction between a weak acid and a strong base.
Hydrocyanic acid being a weak acid ionizes only slightly, while sodium hydroxide being a strong base ionizes completely. The equation for the reaction is given below:
A. HCN(aq) + NaOH-(aq) ----> NaCN(aq) + H2O(l)
Since Hydrocyanic acid is written in the aqueous form as it ionizes only slightly and the ionic equation is given below:
HCN(aq) + Na+(aq)+OH-(aq) ----> Na+(aq)+CN-(aq) + H2O(l)
Na+ being a spectator ion is removed from the net ionic equation given below:
HCN(aq) + OH-(aq) ----> H20(l) + CN-(aq)
Ok so, remember that t<span>he average atomic mass is what is seen on the periodic table. It is the average mass of all of the isotopes with their frequency taken into account. What you need to do is add the products of the masses and frequencies Just like this:</span>
<span>0.903*267.8 + 0.097*270.9
When you add it the result is what you are looking for</span>
Answer:
317.6 mL
Explanation:
Step 1: Write the balanced neutralization equation
MgO + 2 HCl ⇒ MgCl₂ + H₂O
Step 2: Calculate the mass corresponding to 640.0 mg of MgO
The molar mass of MgO is 40.30 g/mol. The moles corresponding to 640.0 mg (0.6400 g) of MgO are:
0.6400 g × (1 mol/40.30 g) = 0.01588 mol
Step 3: Calculate the moles of HCl that react with 0.01588 moles of MgO
The molar ratio of MgO to HCl is 1:2. The moles of HCl are 2/1 × 0.01588 mol = 0.03176 mol
Step 4: Calculate the volume of 0.1000 M HCl that contains 0.03176 moles
0.03176 mol × (1 L/0.1000 mol) = 0.3176 L = 317.6 mL
Answer:
The rate determining step is step 1
Explanation:
Answer:
Part A: 47.8 mi/h
Part B: 0.072 M/s
Part C: 0.144 M/s
Explanation:
Part A
The average speed or velocity (V) is the variation of the space divided by the variation of the time:
V = (241 - 2)/(8 -3)
V = 47.8 mi/h
Part B
As Part A, the average rate (r) of formation of I2 is the variation of the concentration divided by the variation of time:
r = (1.83 - 1.11)/(15 - 5)
r = 0.072 M/s
Part C
The rates of the substances are proportional of their number of moles (n) which are their coefficient, so:
rI2/nI2 = rHCl/nHCl
0.072/1 = rHCl/2
rHCl = 2*0.072
rHCl = 0.144 M/s