A portion of the Quadratic Formula proof is shown. Fill in the missing reason. Statements Reasons ax2 + bx + c = 0 Given ax2 + b
x = −c Subtract c from both sides of the equation x squared plus b over a times x equals negative c over a Divide both sides of the equation by a x squared plus b over a times x plus the quantity b over 2 times a squared equals negative c over a plus the quantity b over 2 times a squared Complete the square and add the quantity b over 2 times a squared to both sides x squared plus b over a times x plus the quantity b over 2 times a squared equals negative c over a plus b squared over 4 times a squared Square the quantity b over 2 times a on the right side of the equation x squared plus b over a times x plus the quantity b over 2 times a end quantity squared equals negative 4 times a times c over 4 times a squared plus b squared over 4 times a squared Find a common denominator on the right side of the equation x squared plus b over a times x plus the quantity b over 2 times a squared equals b squared minus 4 times a times c all over 4 times a squared Add the fractions together on the right side of the equation quantity x plus b over 2 times a end quantity squared equals b squared minus 4 times a times c all over 4 times a squared ? Rewrite the perfect square trinomial as a binomial squared on the left side of the equation Take the square root of both sides of the equation Multiply both sides of the equation by 2 Square the left side of the equation