Answer:
3
Explanation:
Applying,
= R/R'............... Equation 1
Where n' = number of halflives that have passed, R = Original atom of the substance, R' = atom of the substance left after decay.
From the question,
Given: R = 40 atoms, R' = 5 atoms
Substitute these values into equation 1
= 40/5
= 8
= 2³
Equation the base,
n' = 3
From the given equations, the combustion reaction is;
C₄H₁₂ + 7O₂ --> 4CO₂ + 6H₂O
Combustion reactions are when organic compounds react with O₂ to produce water and CO₂. From the given reactions, C₄H₁₂ is an organic compound that reacts with O₂ to produce water and CO₂.
Therefore this is the only reaction that follows the general equation for combustion.
The given question is incomplete. The complete question is as follows.
Which of the following best helps explain why an increase in temperature increases the rate of a chemical reaction?
(a) at higher temperatures, high-energy collisions happen less frequently.
(b) at low temperatures, low-energy collisions happen more frequently.
(c) at higher temperatures, less-energy collisions happen less frequently.
(d) at higher temperatures, high-energy collisions happen more frequently
Explanation:
When we increase the temperature of a chemical reaction then molecules of the reactant species tend to gain kinetic energy. As a result, they come into motion which leads to more number of collisions within the molecules.
Therefore, chemical reaction will take less amount of time in order to reach its end point. This means that there will occur an increase in rate of reaction.
Thus, we can conclude that the statement at higher temperatures, high-energy collisions happen more frequently, best explains why an increase in temperature increases the rate of a chemical reaction.
The density of an object determines whether it will float or sink in another substance. An object will float if it is less dense than the liquid it is placed in. An object will sink if it is more dense than the liquid it is placed in.